Imaging dipole flow sources using an artificial lateral-line system made of biomimetic hair flow sensors.
نویسندگان
چکیده
In Nature, fish have the ability to localize prey, school, navigate, etc., using the lateral-line organ. Artificial hair flow sensors arranged in a linear array shape (inspired by the lateral-line system (LSS) in fish) have been applied to measure airflow patterns at the sensor positions. Here, we take advantage of both biomimetic artificial hair-based flow sensors arranged as LSS and beamforming techniques to demonstrate dipole-source localization in air. Modelling and measurement results show the artificial lateral-line ability to image the position of dipole sources accurately with estimation error of less than 0.14 times the array length. This opens up possibilities for flow-based, near-field environment mapping that can be beneficial to, for example, biologists and robot guidance applications.
منابع مشابه
Artificial lateral-line system for imaging dipole sources using beamforming techniques
In nature, fish have the ability to localize prey, school, navigate, etc. using the lateral-line organ [1]. Here we present the use of biomimetic artificial hair-based flow-sensors arranged as lateral-line system in combination with beamforming techniques for dipole source localization in air. Modelling and measurement results show the artificial lateral-line ability to image the position of di...
متن کاملAdvancements in Biomimetic Hair Flow-sensor Arrays
In this paper we present the latest developments in the design, fabrication and application of single and arrays of biomimetic hair flow-sensors towards high-resolution air-flow imaging. Redesigning the electrode system of the hair sensor (using SOI wafer technology) has led to improve the detection limit down to 1 mm/s air-flow amplitude using 3 kHz measurement bandwidth. SOI technology facili...
متن کاملTowards a high-resolution flow camera using artificial hair sensor arrays for flow pattern observations.
Flow-sensor arrays uncover the potential to measure spatio-temporal flow patterns rather than flow measurements at just a single point. We present in this paper the developments in design, fabrication and interfacing of biomimetic flow-sensor arrays, inspired by flow-sensitive organs (cerci) of crickets. For the purpose of high-resolution flow field visualization by our artificial hair flow-sen...
متن کاملMultisensor Processing Algorithms for Underwater Dipole Localization and Tracking Using MEMS Artificial Lateral-Line Sensors
An engineered artificial lateral-line system has been recently developed, consisting of a 16-element array of finely spaced MEMS hot-wire flow sensors. This represents a new class of underwater flow sensing instruments and necessitates the development of rapid, efficient, and robust signal processing algorithms. In this paper, we report on the development and implementation of a set of algorith...
متن کاملMicro-Machined Flow Sensors Mimicking Lateral Line Canal Neuromasts
Fish sense water motions with their lateral line. The lateral line is a sensory system that contains up to several thousand mechanoreceptors, called neuromasts. Neuromasts occur freestanding on the skin and in subepidermal canals. We developed arrays of flow sensors based on lateral line canal neuromasts using a biomimetic approach. Each flow sensor was equipped with a PDMS (polydimethylsiloxan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Royal Society, Interface
دوره 10 83 شماره
صفحات -
تاریخ انتشار 2013